Rotational Spectroscopy

Microwave Spectroscopy

Manas Layek Assistant Professor Bankura Christian College Bankura, West Bengal , India

Facts about rotational spetroscopy

- Free rotation in gas phase
- Quantized rotational energy states
- Pure rotation spectra occur in the microwave region of the spectrum (~1 - 200 cm⁻¹)
- molecule must possess a permanent electric dipole moment Thus, CO, NO, and HCl will all exhibit rotational spectra but S2 or H2 will not.

Rigid Rotor Model

bodies that do not distort under the stress of rotation

Types of Rigid Rotors

Linear Molecule

Spherical Rotor (Top) Spherical rotors have three equal principal moments of inertia.

$$I_a = I_b = I_c$$

Symmetric Rotor (Top) Symmetric rotors have two equal principal moments of inertia and one that is different. Two cases exist for symmetric rotors.

- Prolate tops
- In a prolate top, the c axis and b axis moments of inertia are equal, that is,
- $I_c = I_b > I_a$
- Oblate top

In an oblate top, the a axis and b axis moments of inertia are equal, that is, Ic > Ib = Ia

Rigid Rotor Model of a Diatomic Molecule

The bond distance: $R = r_1 + r_2$

The center of mass has a physical property,

$$r_1 m_1 = r_2 m_2 \tag{1}$$

The moment of inertia:

$$I = m_1 r_1^2 + m_1 r_2^2 2.$$

The radial distances from masscenter can be given by bond length

$$r_1 = \frac{m_2 R}{m_1 + m_2}$$
 $r_2 = \frac{m_1 R}{m_1 + m_2}$ 3.

Substituting r_1 and r_2 into Equation 2. we get for I

$$\mathbf{I} = \frac{m_1 m_2}{m_1 + m_2} \mathbf{R}^2$$

Introducing reduced mass, μ

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2} \qquad \qquad \mu = \frac{m_1 m_2}{m_1 + m_2}$$
$$\mathbf{I} = \mu \cdot \mathbf{R}^2$$

$$E = \frac{I_{a}\omega_{a}^{2}}{2} + \frac{I_{b}\omega_{b}^{2}}{2} + \frac{I_{c}\omega_{c}^{2}}{2}$$

Equation 2. can be transformed

$$E = \frac{I_{a}^{2}\omega_{a}^{2}}{2I_{a}} + \frac{I_{b}^{2}\omega_{b}^{2}}{2I_{b}} + \frac{I_{c}^{2}\omega_{c}^{2}}{2I_{c}}$$

to substitute angular momentum, J.

$$E = \frac{J_{a}^{2}}{2I_{a}} + \frac{J_{b}^{2}}{2I_{b}} + \frac{J_{c}^{2}}{2I_{c}}$$

Classical theory Expression of Energy

2.

Schrödinger equation

$E\Psi = \hat{H}\Psi$

but quantum theory requires that a molecule may only possess energies given by equation

$$E_{rot}(J) = J(J+1) \cdot \frac{h^2}{4\pi^2 \cdot 2I} = J(J+1) \cdot \frac{h^2}{8\pi^2 \cdot I} \quad \text{joules}$$

where J is the rotation J = 0, 1, 2, 3,...;

$$\varepsilon_J = \frac{E_J}{hc} = \frac{h}{8\pi^2 Ic} J(J+1) \text{ cm}^{-1} \qquad (J=0, 1, 2, \ldots)$$

$$\varepsilon_J = BJ(J+1) \text{ cm}^{-1}$$
 $(J = 0, 1, 2, ...)$

where B, the rotational constant, is given by

$$B = \frac{h}{8\pi^2 I_B c} \quad \text{cm}^{-1}$$

$$I = \frac{m_1 m_2}{m_1 + m_2} r_0^2 = \mu r_0^2$$

Rotational Spectra of Rigid Rotor

Selection Rule: Apart from Specific rule, $\Delta J = \pm 1$, Gross rule- the molecule should have a permanent electric dipole moment, μ . Thus, homonuclear diatomic molecules do not have a pure rotational spectrum. Heteronuclear diatomic molecules do have rotational spectra.

Rotational energy levels allowed for a rigid diatomic molecule

Selection Rule

• pure rotation spectrum obeys the selection rule $\Delta J = \pm 1$

Rotational Energy Levels

